Introduction	Numerical Model	Transport law	Effect

Impact of size segregation on the sediment mobility during bedload transport.

Rémi Chassagne, Raphaël Maurin, Julien Chauchat and Philippe Frey

November 14th 2019

ntroduction	Numerical Model	Transport law	Effect

Introduction - Context

During bedload transport :

- Necessity to estimate sediment flux
- Poorly sorted sediment \rightarrow size sorting
- Impact on the sediment flux. Which one? Are we able to characterise them?

Pictures of armouring on the field resulting from size-segregation

Introduction	Numerical Model	Transport law	Effect
	000		

Numerical Model

Discrete Element Method (DEM) coupled with a 1D turbulent fluid model (Maurin et al. 2015, 2016) :

- DEM (code YADE) : Lagragian method based on contact between particles
- Fluid : 1D vertical turbulent fluid flow based on mixing length closure

Granular phase, for each particle p:

$$m^p \frac{d^2 \vec{x}^p}{dt^2} = \vec{f}_c^p + \vec{f}_g^p + \vec{f}_f^p$$

$$\mathcal{I}^p \frac{d\vec{\omega}^p}{dt} = \vec{\mathcal{T}} = \vec{x}_c \times \vec{f}_c^p$$

Fluid phase :

$$\rho^{f} \epsilon \frac{\partial \langle u_{x} \rangle^{f}}{\partial t} = \frac{\partial S_{xz}^{f}}{\partial z} - \frac{\partial R_{xz}^{f}}{\partial z} + \rho^{f} \epsilon g_{x} - n \langle f_{D} \rangle$$

 $\vec{f}_{f}^{p} : \text{fluid forces over particles}$ $\vec{f}_{b}^{p} : \text{Buoyancy force}$ $\vec{f}_{D}^{p} : \text{Drag force}$ $\vec{f}_{D}^{p} = \frac{1}{2}\rho^{f}\frac{\pi d^{2}}{4}C_{D}\left\|\vec{u}^{f} - \vec{v}^{p}\right\|\left(\vec{u}^{f} - \vec{v}^{p}\right)$

Introduction	Numerical Model	Transport law	Effect
	000		

Numerical Model

Discrete Element Method (DEM) coupled with a 1D turbulent fluid model (Maurin et al. 2015, 2016) :

- DEM (code YADE) : Lagragian method based on contact between particles
- Fluid : 1D vertical turbulent fluid flow based on mixing length closure

Granular phase, for each particle p:

$$\begin{split} m^p \frac{d^2 \vec{x}^p}{dt^2} &= \vec{f}^p_c + \vec{f}^p_g + \vec{f}^p_f \\ \mathcal{I}^p \frac{d \vec{\omega}^p}{dt} &= \vec{\mathcal{T}} = \vec{x}_c \times \vec{f}^p_c \end{split}$$

Fluid phase :

$$\rho^{f} \epsilon \frac{\partial \langle u_{x} \rangle^{f}}{\partial t} = \frac{\partial S_{xz}^{f}}{\partial z} - \frac{\partial \mathbf{R}_{xz}^{f}}{\partial z} + \rho^{f} \epsilon g_{x} - n \left\langle f_{D} \right\rangle$$

Reynolds shear stress :

$$R_{xz}^f = \rho^f \nu^t \frac{d \langle u_x \rangle^f}{dz}$$

 ν^t : turbulent viscosity computed with a mixing length

Introduction	Numerical Model	Transport law	Effect
	000		

Numerical Model

Discrete Element Method (DEM) coupled with a 1D turbulent fluid model (Maurin et al. 2015, 2016) :

- DEM (code YADE) : Lagragian method based on contact between particles
- Fluid : 1D vertical turbulent fluid flow based on mixing length closure

Granular phase, for each particle p:

$$\begin{split} m^p \frac{d^2 \vec{x}^p}{dt^2} &= \vec{f}_c^p + \vec{f}_g^p + \vec{f}_f^p \\ \mathcal{I}^p \frac{d \vec{\omega}^p}{dt} &= \vec{\mathcal{T}} = \vec{x}_c \times \vec{f}_c^p \end{split}$$

Fluid phase :

$$\rho^{f} \epsilon \frac{\partial \langle u_{x} \rangle^{f}}{\partial t} = \frac{\partial S_{xz}^{f}}{\partial z} - \frac{\partial R_{xz}^{f}}{\partial z} + \rho^{f} \epsilon g_{x} - n \langle f_{D} \rangle$$

Coupling with particles through the drag force

Introduction	Numerical Model	Transport law	Effect
	000		
Numerical setup			

Geometrical parameters :

- 3D bi-periodic domain
- Slope : 10%
- $d_l/d_s = 2 (6 \text{ mm} / 3 \text{ mm})$
- $\blacksquare \ H = 8d_l$
- Shields Number : $\theta = \frac{\tau_f}{(\rho^p \rho^f)gd_l}$

(a) $N_l = 2$

Introduction	Numerical Model	Transport law	Effect
	000		

Simulations

Transport rate :

$$Q_s = \int_z \phi v_x^p dz$$

 $Q_s^* = \frac{Q_s}{\sqrt{(\rho^p/\rho^f-1)gcos(\alpha)\bar{d}^3}}, \, \bar{d}: \text{mean surface diameter}$

Introduction	Numerical Model	Transport law	Effect
		000	

Comparison Mono, $N_l = 2$:

- $Q_s^{*mono} = 15.77\Theta^{1.88}$
- $Q_s^{*N2} = 21.59\Theta^{1.88}$
- Transport 37% more efficient

0 000 000 00000	Introduction	Numerical Model	Transport law	Effect
	0	000	•00	0000000

Comparison Mono, $N_l = 2$:

 $Q_s^{*mono} = 15.77\Theta^{1.88}$

$$Q_s^{*N2} = 21.59\Theta^{1.88}$$

■ Transport 37% more efficient

- Local transport : $q_s^i = \phi^i v_x^i$
- Both small and large particlesare transported

0 000	000	0000000

Comparison Mono, $N_l = 2$:

 $Q_s^{*mono} = 15.77\Theta^{1.88}$

$$Q_s^{*N2} = 21.59\Theta^{1.88}$$

■ Transport 37% more efficient

- \blacksquare Local transport : $q_s^i = \phi^i v_x^i$
- Both small and large particlesare transported

Introduction	Numerical Model	Transport law	Effect
		000	

Comparison Mono, $N_l = 4$:

- Small shield : no effect
- Big shield : big effect
- ⇒ depth of interface small/large important

<u> </u>	b	0000000

Comparison Mono, $N_l = 4$:

- Small shield : no effect
- Big shield : big effect
- ⇒ depth of interface small/large important

- \blacksquare Local transport : $q_s^i = \phi^i v_x^i$
- Necessity to transport small particles
- Not a rugosity effect

Introduction Nu	umerical Model	Transport law	Effect
0 00	00	000	0000000

Comparison Mono, $N_l = 4$:

- Small shield : no effect
- Big shield : big effect
- ⇒ depth of interface small/large important

- $\blacksquare \text{ Local transport}: q_s^i = \phi^i v_x^i$
- Necessity to transport small particles
- Not a rugosity effect

Introduction	Numerical Model	Transport law	Effect
		000	

Small conclusion

Summary :

- Model : reproduce an increase of mobility in bidisperse case
- Small particles need to be transported
- Small and large particles take part of the increase

Why are small particles sometimes transported?

- Fluid effect : fluid shear stress sufficient to transport small particles?
- Granular effect : how, what effect ?

Introduction	Numerical Model	Transport law	Effect
			000000

Fluid effect?

 $\frac{\tau^f}{\sqrt{(\rho^p/\rho^f-1)gcos(\alpha)d^3}}, d$ local diameter Dimensionless fluid shear stress : $\tau^{f*} =$ ϕ_s 0.08 0.08 фı 0.06 0.06 (E) N 0.04 z (m) 0.050 0.04 0.045 0.040 0.02 0.02 0.035 0.030 0.000 0.002 0.004 0.00 0.00 0.1 0.3 0.0 0.2 0.4 0.6 0.0 0.2 τ^{f*} φi

 τ^{f*} too small to be responsible for the mobility of small particles. Not a fluid effect \Rightarrow granular effect

Introduction	Numerical Model	Transport law	Effect
			000000

$\mu(I)$ rheology

 $\mu(I)$ rheology makes a link between :

• the stress state of a granular material ($\mu = \tau^p / P^p$)

the dynamical state of the granular media (I) Inertial number : $t_{\text{macro}} = \frac{1}{2}$

$$\mu < \mu_s$$
: no motion (for glass $\mu_s = 0.38$)

•
$$\mu \ge \mu_s$$
 : $\mu = \mu(I)$ (bijection)

Introduction	Numerical Model	Transport law	Effect
			0000000

Granular stress state

 $\Theta = 0.3$, comparison monodisperse and $N_l = 2$ configuration.

Same stress state in both configurations

Introduction	Numerical Model	Transport law	Effect
			0000000

Granular stress state

 $\Theta = 0.3$, comparison monodisperse and $N_l = 2$ configuration.

- Same stress state in both configurations
- $\mu = \frac{\tau^p}{P^p}$, same friction coefficient
- $\blacksquare \ \mu(I) \text{ rheology : same } I$

$$\blacksquare I_{mono} = I_{N2}$$

$$\Rightarrow \frac{d_l \dot{\gamma}_{mono}}{\sqrt{P^p / \rho^p}} = \frac{d \dot{\gamma}_{N2}}{\sqrt{P^p / \rho^p}}$$
$$\Rightarrow \dot{\gamma}_{N2} = \frac{d_l}{d} \dot{\gamma}_{mono}$$

Introduction	Numerical Model	Transport law	Effect
			0000000

Application of $\mu(I)$ rheology

First zone ($0 < z < z_1$) : $\mu < \mu_s$ no motion

Introduction	Numerical Model	Transport law	Effect
			0000000

Application of $\mu(I)$ rheology

First zone $(0 < z < z_1)$: $\mu < \mu_s$ no motion Second zone $(z_1 < z < z_2)$: $\dot{\gamma}_{N2} = \frac{d_l}{d_s} \dot{\gamma}_{mono} = 2\dot{\gamma}_{mono}$

$$\Rightarrow v_{N2}(z) - v_{N2}(z_1) = 2(v_{mono}(z) - v_{mono}(z_1))$$

$$v_{N2} = 2v_{mono}$$

Introduction	Numerical Model	Transport law	Effect
			0000000

Application of $\mu(I)$ rheology

■ First zone $(0 < z < z_1)$: $\mu < \mu_s$ no motion ■ Second zone $(z_1 < z < z_2)$: $\dot{\gamma}_{N2} = \frac{d_l}{d_s} \dot{\gamma}_{mono} = 2\dot{\gamma}_{mono}$ $\Rightarrow v_{N2}(z) - v_{N2}(z_1) = 2(v_{mono}(z) - v_{mono}(z_1))$

$$v_{N2} = 2v_{mono}$$

Third zone $(z_2 < z)$: $\dot{\gamma}_{N2} = \dot{\gamma}_{mono} \Rightarrow v_{N2}(z) - v_{N2}(z_2) = v_{mono}(z) - v_{mono}(z_2)$ $v_{N2} = v_{mono} + \Delta v(z_2)$

Introduction	Numerical Model	Transport law	Effect
			0000000

Conclusions

- Increased mobility : granular effect
- Can be explained by the $\mu(I)$ rheology
- Small particle are more mobile due to rheological effect
- Boundary problem for the large particles at the top
- If interface large/small is below the limit $\mu = \mu_s$: no effect

Introduction	Numerical Model	Transport law	Effect
			00000000

Perspective 1

- Make a idealized 3 layers model : small no moving, small in motion, large in motion
- Compute width of the small particles layer in motion
- Estimate slip velocity
- Estimate the enhanced sediment transport

Introduction	Numerical Model	Transport law	Effect
			000000

Perspective 2

Is there a modification of the rheology due to the small particles ? Same $\mu \Rightarrow$ Same I ?

