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I - Context and motivation
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II - Numerical model

Lattice Boltzmann Method (LBM)
Fluid phase

Discrete Element Method (DEM)
Solid phase

Contact models

collisionstreaming

hydrodynamics

(Cundall & Strack, 1979)

ma=F+Fc+Fh

J’=T+Tc+Th



II - Numerical model

Experimental data 
with model material:

[Delenne et al., 2004]

Discrete Element Method (DEM)
Solid phase



Outline

I) Context and motivations

II) Numerical Model

III) Submerged cohesive granular flow through an orifice

1) Solid discharge rate 
2) Pressure drop

IV) Conclusion and perspectives



III – Submerged cohesive granular flow through an orifice

Pinlet = 0

Number of particles
N = 37 452
d = 3 mm

g

D

𝐶𝑜ℎ =
𝐶

(𝜌𝑔−𝜌𝑓)𝑔𝑆

𝜌𝑔 : particle density

𝜌𝑓 : fluid density

C : bond strength

S : particle area

Particle cohesion number

Parametric study

From cohesionless to various cohesion

Various orifice size D
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GPU (CUDA)

g
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Parallelized code

Benseghier et al. (2019)
Computers and Geotechnics

(submitted)
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Air-assisted
powder flows

Bulsara et al. (1964)

De Jong & Hoelen (1975)
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Sphere drag force

Terminal falling velocity in fluid

Solid mass flow rate
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1)  Solid discharge rateIII – Submerged cohesive granular flow

Submerged particles
Solid mass flow rate

Experimental Study

Gravitational flow 

Cohesionless

Cut-off due to the fluid

k =2.4 ± 0.1 instead of k=1.5 in air
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Benseghier et al. (2019)

DEM-LBM sphere fall

2D

Solid discharge rate



1)  Solid discharge rateIII – Submerged cohesive granular flow

2D

Solid discharge rate
Apparent orifice

Cut-off

k =2.2 ± 1  

Exp. : Wilson et al.  
k=2.4 ± 0.1

Increase with
particle cohesion



1)  Solid discharge rateIII – Submerged cohesive granular flow

2D

Solid discharge rate
Apparent orifice

Cut-off

Dry case

Capillary liquid bonds
DEM + cohesion

Anand et al. (2009)

Similar behavior

Increase with
particle cohesion
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III – Submerged cohesive granular flow

Submerged granular flow Solid mass flow rate

Experimental Study

Gravitational

Cohesionless

2) Pressure drop

Pressure-driven

Pressure measurement
Above and Below the orifice

Guo et al. (2017)



III – Submerged cohesive granular flow 2) Pressure drop

Pressure « measurement »
Above and Below the orifice



III – Submerged cohesive granular flow 2) Pressure drop

AGREEMENT

Exp. : Guo et al. (2017)
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IV - Conclusion

Micromechanical approach
Bond network

Particle and fluid flow

Solid flow rate

• Qs increases linearly with the orifice size D consistently with a 2D Beverloo law.

• Apparent orifice size k is higher in the submerged case consistently with experiments.

and increases with the particle cohesion.

Interstitial flow analysis

• Fluid entrainment by the particle motion.

• Pressure drop around the orifice consistent with experiments.



IV - Perspectives

• What about the particle-fluid interaction ?

• Can we properly correlate the particle cohesion with the agregate size ?

• Calibration with experiments on artificial cemented material

Solid bridges with resin

Brunier-Coulin thesis
(2017)

Gravitational flow

Pressure-force flow
Pinlet ≠ 0

Work in progress
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