

Transport dans les sols:

Eau, colloïdes, contaminants,

imagerie, mécanismes, modèles.

<u>Eric MICHEL</u>, Stéphane Sammartino, François Lafolie, Yvan Capowiez, Stéphane Ruy, Philippe Beltrame

eric.michel@inra.fr

Évolution des services rendus par les sol

rain	Prédire la capacité des sols à: - servir de filtre protégeant les aquifères -supporter l'agriculture	Sous l'impact des: -activités humaines, -pratiques agricoles -changement climatique
surface		
soil		
ground		
water		

Évolution des services rendus par les sol

transport de colloïdes dans les sols

natural soil colloid mobilization mechanisms ? colloid retention mechanisms ?

preferential macropore flow

water, immobile soil, colloids, air

preferential macropore flow

Macropores :

- earthworm burrows,
- space left by decayed roots

→ gravity driven water transport →water bypasses the soil matrix

preferential macropore flow

- relation macropore network geometry and transfert ?

- how does macropore flow affect colloid mobilization? retention ?

Macropore flow...

relation macropore network geometry and transfert

modeling macropore flow

Colloid transport

relation macropore flow natural colloid mobilization

magnetic resonance imaging

relation macropore network ←→ water & colloid transfert ?

relation macropore network ←→ water & colloid transfert ?

Colloïdes:

Aucune relation statistique entre quantités de colloïdes naturels élués et

Explique seulement 14% de la variation de V_p : Tous les pores ne sont peut être pas actif !

Capowiez et al. Pedobiologia, 2014

vers une identification du réseau de macropore actif

Macropore network imaged with X-ray CT

vers une identification du réseau de macropore actif

Macropore network imaged with X-ray CT

Time lapse X-ray CT imaging

Sammartino et al. Vadoze Zone J. 2012

vers une identification du réseau de macropore actif

improved qualitative knowledge of flow processes Useful for models ?

modélisation

- macropores: taille > 0.3 mm
- la capillarité ne s'applique pas: le modèle de Darcy-Richards n'est pas une option.
- la gravité est le moteur de l'écoulement
- les macropores ne sont pas saturés
- l'eau s'écoule sous forme de films

Quel(s) modèle(s) ?

Film flow in a macropore

Χ

Assumptions

•Low macropore saturation

—> No capillary liquid bridge

• Axisymmetric problem

 \odot longwave approximation

(scale separation between r and x) Navier stokes equations are reduced to a low dimensional model

Physical parameters

- Viscosity
- Surface tension
- \odot Wettability \rightarrow partial wetting.
- \odot exchange with microporosity

Beltrame. *Europhysics Letters*. **2018** philippe.beltrame@univ-avignon.fr

échange eau ou matière

Film flow in a macropore

Χ

Equations de Navier-Stokes prenant en compte mouillabilité et échanges avec la microporosité

Assumptions

•Low macropore saturation

—> No capillary liquid bridge

• Axisymmetric problem

● longwave approximation

(scale separation between r and x) Navier stokes equations are reduced to a low dimensional model

Physical parameters

- Viscosity
- Surface tension
- \odot Wettability \rightarrow partial wetting.
- \odot exchange with microporosity

Beltrame. *Europhysics Letters*. **2018** philippe.beltrame@univ-avignon.fr

échange eau ou matière

Modèle des ondes cinématiques

Beven & Germann, 1981

Modèle des ondes cinématiques

Modèle des ondes cinématiques

Di Pietro, Ruy, Capowiez, J. Hydrol. 2003

Kinematic Dispersive Wave model

Modèle des ondes cinématiques

Linking model X-ray CT images

Using the 3D images to determine a priori values of model parameters:

$$d = f(z)$$

$$\theta_{\text{mac}_{\text{max}}} = f(z)$$

$$S = -\frac{K(h)}{d} \times \frac{0-h}{d} \times \frac{\theta_{\text{mac}}}{\theta_{\text{mac}}}$$

X

- n'améliore pas la reproduction des données expérimentales

- Diminue l'incertitude sur les valeurs des parametres déterminés par modélisation inverse

Lissy, PhD Thesis, 2018

experimental set up and questions

Peak during transient flow rate regime

La durée d'une période sèche entre deux pluies influence t-elle la hauteur du pic ?

results

Majdalani et al. Eur. J. Soil. Sci. 2008, 59, 147-155

results

Majdalani et al. Eur. J. Soil. Sci. 2008, 59, 147-155

results

Constant rain interruption duration does NOT reproduce the pattern

colloid mobilization conceptual model

Michel et al. Vadose Zone J., 2010

colloid mobilization conceptual model

Michel et al. Vadose Zone J., 2010

colloid mobilization conceptual model

Michel et al. Vadose Zone J., 2010

colloid mobilization conceptual model

numerical model (Vsoil platform)

Michel et al. , Eur. J. Soil Sci., 2014, 65 (3), 336-347.

numerical model (Vsoil platform)

Michel et al. , Eur. J. Soil Sci., 2014, 65 (3), 336-347.

Strengthen the hypothesis of mobilization by differential capillary stresses. Link between pore structure modifications & leaching.

Provides a physically based regeneration mechanism Eliminates the necessity to estimate the initial size of the pool of leachable colloids

natural soil colloid mas EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 43, 45–63 (2018) Copyright © 2017 John Wiley & Sons, Ltd. Published online 3 May 2017 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/esp.4147 Sediment detachment and transport processes associated with internal erosion of soil pipes State of Science Glenn V. Wilson,^{1*} D Robert Wells,¹ Roger Kuhnle,¹ Garey Fox² and John Nieber³ Figure 7. Sediment entering a soil pipe by interception of runoff by a pipe collapse feature in Goodwin Creek Experimental Watershed (GCEW).

. . . .

Transport of colloids monitored by MRI

Transport of colloids monitored by MRI

Lehoux et al. Water Research, 2017,123, 12-20

Model permits a quantitative use of the MRI profiles

Abundant time-lapse MRI profiles permit to test the models to their very limits !

Outline

Expériences

transport d'eau de solutés de colloïdes à l'échelle de la colonne de sol non perturbée

Simulateur de pluie

Imagerie fonctionnelle: obtenir des informations qualitative et quantitatives à l'intérieur du sol au cours de processus dynamiques

 Mécanismes
Conception et utilisation de modèles couplés

Perspectives : [1] macropore flow

Does water flow impact macropore structure ?

Perspectives [2] Transport de solutés et IRM

Substances perfluorées : PFAS

Les substances perfluoro –alkyles, $C_n F_{2n+1} - X \dots$

1- ... sont utilisées dans une nombre important de procesus y produits ...

2-...et sont

persistentes

bioacumulables

toxiques....

3- ... elles sont présentes dans tous les compartiments environnementaux

Perspectives [2] Transport de solutés et IRM

Substances perfluorées : PFAS

agriculture

multidisciplinary

Nécessité de prévoir l'internalisation par les plantes des PFAS, leur devenir dans le sol, les interaction PFAS-sol

Perspectives [2] Transport de solutés et IRM

Interaction sol – PFAS non comprise complètement

Interaction hydrophobes et electrostatiques

Interaction Sol – Eau - Contaminant

Déposition de colloides lors de cycles mouillage/séchage

