Characterizing shapes and motions

Some applications of Al to analysing physics and
medical data
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My research domains

Visual perception
Images
Videos
Multi-modal data

Modelling
Machine learning
Deep learning

Data-driven models
Hybrid data- and knowledge-driven models

Scientific image analysis



My research domains

Healthcare applications

@ =i
Medical image analysis - == | '
Diagnosis & assistive technologies

Astrophysics applications
Catalogue generation from grand surveys

Detection and monitoring of transient events

Scientific image analysis



Characterising Characterising

Similar tasks shapes motions

NGC 1097 FUv
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Big data

Similar challenges Ground truth

Interpretability

NGC 1097 FUv U

¢

Multimodal images:

== Different resolutions and s,
modalities / wavelengths

Misalignments
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Peculiar image properties
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Scientific vs natural images a
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High dynamic ranges, low contrasts Noise 100

Meaning of the intensity value

NGC 4736 FUV

Need specifically designed algorithms

Scientific image analysis
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Overview: Characterising shapes and motions

Shape reconstruction

Shape analysis
Motion analysis

Trust issues

Scientific image analysis




IReSISD: shape modelling for multimodal data

Modelling from multimodal data with heterogeneous resolutions, misalignments, and gaps




Some results on images and point clouds
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Some examples of applications in astrophysics

Reconstruction of solar active regions from multispectral images

1000 000 °C Corona

10 000 °C Upper Chromosphere

4 000 °C Lower Chromosphere
6 000 °C Photosphere

End goal:
Understanding the mechanisms of the solar activity
Predicting solar activity

Collaboration with Paris-Meudon Observatory

Shape reconstruction



Some examples of applications in astrophysics

* Modelling of the Martian terrain from orbital multispectral images

Point cloud

—

Terrain model

Stereoscopic photometry — fimage from wikipedial

Raw image

End goals:
o |dentification of typical and abnormal geological properties

Collaboration with Institut de Planétologie et d’Astrophysique de Grenoble (IPAG)

Shape reconstruction




Overview: Characterising shapes and motions

Shape reconstruction

Shape analysis
Motion analysis

Trust issues
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Joint solving of interdependent tasks \

Solar radio bursts
o Detection
o Classification (types Il and Ill)
o Regression of properties (duration, decrease rate, harmonic)
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Truncated histogram

Collaboration with Paris-Meudon Observatory
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Joint solving of interdependent tasks

Galaxy morphology:
Classification of morphology types

Regression of morphology parameters

Including N/A params .
% * | »

Multispectral images
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Collaboration with Strasbourg Observatory
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Joint solving of interdependent tasks

Typical answer nowadays: Multi-branch deep neural network

v Tasks share features

Outputs: bbox classifier
, softmax regressor
= T Rol pooling

..... S FC

Rol feature
feature map VeCtOf For each Rol
Fast R-CNN
Mask R-CNN

Faster R-CNN

Shape analysis



Structured analysis that integrates prior knowledge
1.

Characterisation as a simple multi-label classification problem [1]

Does not account for relations between parameters!

2. Hierarchical loss function [2]
p(A,B) = p(BIA) - p(A)
Visibl Val \ Probability that
isible alue ' 'ty that
Probability of the attribute attrlbu'te.|s visible:
value: softmax loss logistic loss
3.

Architecture designed to match the problem’s structure [3]
Auxiliary Properties Estimations
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Input Graph

Update of internal states
representation

through specialised
message passing

Parallel
readout functions

Potential energy curve
created with queries at
different atomic distances




The question of representation

Parametric representation:
Naturally defined:

Hard to define:

Redundant: T e
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The question of representation

Learnt representation

[1]

Robust Diffusion Map Manifold

O ...as a basis for deep learning analysis

Skeleton extraction

Preliminary building of the
high-level feature space
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Raw depth image Silhouette CNN based regression Output coordinates in the pose space
extraction
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Shape reconstruction

Shape analysis
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Joint tracking and characterization of near-Earth objects

Tracking in space... ... and in physical parameters’ space
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Collaboration with NASA/JPL
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Mobility assessment from Kinect data

200

Scoring of movement quality

g 150
from depth images Z 100
Qo
Eo 50
0
0 5 10 15 20
1. Model normal movements Day / Week / Month..
2. Quantify deviations from the model
Kinect depth image Pose representation Statistical model of kinematics
Measure of
—n —» kinematics’
guality
o Measure of
== Statistical model of pose

pose’s quality

Collaboration with physiotherapy and orthopaedic experts at Bristol hospitals



ome examples of abnormal movements

Obsenvation
,
Left leg lead : _
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Heart function assessment

1. Manifold representation of heart deformations [1]

Cardiac cine MRIs and 4D shape of the

Deformation Manifold representation of
segmentation labels myocardium

volume myocardium deformation
Spatiotemporal

normalization +
3D reconstruction

Difference to

the first frame Manifold building

2. Modelling of a normal heart deformation sequence (in progress)

2 Trust of clinicians:

» Integration of, and mapping to, current proxy measures
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Collaboration with Bristol Heart Institute i et

Image credit: Aurigemma et al. 2006
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Predicting solar activity

1. Tracking of solar features and their interactions
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Likelihood af (X.Y1) to be normal {color plot) and estimated (X,Y1) (black crosses)

2. Modelling of evolutions and behaviours

0 01 02 03 04 05 06 o7 08 09 1
Percentage of movement completion X

3. Prediction that integrates physics knowledge (e.g. magnetic properties)

Collaboration with solar physicist at Paris-Meudon Observatory
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How much can we trust the models and their predictions?

Issue #1: we don’t have all the possible data in the world

» Generalisation problem

esla Model S travels with the
Autopilot activated

indshield hits trailer which
rears up the roof, but
ehicle passes underneath
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ARIZONA ‘
ABC15.COM)3 NEWS: AN AMBER ALERT HAS BEEN 1SSUED TO FIND rwo CHILDREN ABDUCTED INTUC | 93° | heraadfors fowunen
2 - 5, ? feet but veered off and hita

he Model S continues on

fence

It went through another fence i
and a pole before stopping

Trust issues




How much can we trust the models and their predictions?

Issue #1: we don’t have all the possible data in the world

Issue #2: the data may be biased

» Biased data - biased models!

How Microsoft corrupted a bot in 24 hours Fac_eApp apologizes for building a
e | a - .| |racist Al
TayTweets © 2 ayTweets © [ &

@mayank_jee can i just say that im

@UnkindledGurg @PooWithEyes chill
stoked to meet u? humans are super

im a nice person! i just hate everybody

cool
a TayTweets & 2 [l rovrweets o (&
@NYCitizen07 | hate feminists @brightonus33 Hitler was right | hate

and they should all die and burnin hell the jews.

Trust issues



How much can we trust the models and their predictions?

Issue #1: we don’t have all the possible data in the world
Issue #2: the data may be biased

Issue #3: supervised learning requires lots of expert annotated data
» constraints from prior knowledge (e.g. from physics) may:

* reduce the model’s freedom

* help its learning from fewer examples




How do we know what neural networks actually do?

Visualisation methods

Dimensions of Interpretability

Different dimensions prediction

of “interpretability” “Explain why a certain pattern x has
been classified in a certain way f{x).”

model
“What would a pattern belonging

to a certain category typically look
like according to the model.”

data

“Which dimensions of the data
are most relevant for the task.”

=
7 Fraunhofer w GCPR 2017 Tutorial — W. Samek & K.-R. Miller 9

Heinrich Hertz Institute

Trust issues




The next (foreseeable) big developments in Al...

Explainable neural networks

Hybrid data- and knowledge-driven models

Trust issues
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Thank you for your attention
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